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Abstract
We analysed the residual resistivity data for more than 40 films of COSi2
reported by different groups using the available quantum theories of size
effects in metal films. We found that the predictions of the model of
Trivedi and Ashcroft (1988 Phys. Rev. B 38 12298) of Tesanovic et al (1986
Phys. Rev. Lett. 57 2760), and of the mSXW theory (Munoz et al 1999
J. Phys. Condens. Matter 11 L299) agree roughly with the data and with each
other over the entire range of thickness 1 nm � t � 110 nm, although the
rms roughness amplitude needed to best describe the residual resistivity data
is somewhat different for each model. All three models predict surprisingly
similar values for the film resistivity ρF and for the surface resistivity ρS arising
from electron–surface scattering. All three models indicate that Mathiessen’s
rule is violated in thin CoSi2 films, that is, ρF �= ρS + ρB , where ρB is the
bulk resistivity. For 110 nm < t < 10 nm, the resistivity of the film exceeds
by some 25–55% the value dictated by Mathiessen’s rule. And conversely,
the apparent surface induced resistivity ρ ′

S = ρF − ρB estimated assuming the
validity of Mathiessen’s rule, exceeds by nearly one order of magnitude the true
surface-induced resistivity ρS , except in the case of ultrathin films t < 3 nm.

One of the fundamental problems in solid state physics that has attracted the attention of
researchers for over 60 years, relates to the effect of electron–surface scattering on the transport
properties of thin metallic and semiconducting films. A central issue is how the surface of
the structure affects its electrical transport properties, when one or more of the dimensions
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characterizing the structure are comparable to or smaller than the mean free path of the charge
carriers, i.e., what is known as ‘size effects’.

The theoretical work concerning size effects focused for many decades on the Fuchs–
Sondheimer (FS) theory, in which the electron motion is modelled by a Boltzman transport
equation (BTE) and the effect of the rough surface is incorporated into the boundary conditions
that must be satisfied by the electron distribution function obeying a BTE via a specularity
parameter R, that represents the fraction of electrons 0 � R � 1 that are specularly reflected
upon colliding with the rough surface [1]. It is well known that this approach is inadequate for
very thin, high purity samples where the film thickness t is much smaller than the bulk mean
free path �. On the one hand, for ultrapure thin films, the conductivity of the film is expected to
exhibit a stepwise increase with increasing film thickness each time the thickness increases by
half a Fermi wavelength, as a consequence of the quantization of the electronic energy levels
induced by confinement of the electron gas between two parallel potential barriers. This is
known as quantum size effects (QSE). Observations consistent with these expectations have
been reported in Pt films evaporated onto glass slides [2]. The modelling of electron motion
by a BTE with FS boundary conditions does not account for QSE. Moreover, the resistivity of
ultrathin CoSi2 films observed at 4 K has been reported to increase sharply as the thickness of
the film decreases below 10 nm, in a way that cannot be accounted for by the classical model
no matter what reflectivity R is used in the FS formalism [3]. On the other hand, in the limit
� → ∞ the FS conductivity diverges as ln(�/t), implying that when the conductivity of the
film is limited only by electron–surface scattering, there is no dissipation, an unphysical result
that arises from the omission of quantum effects in the classical theory.

To overcome these shortcomings, a number of quantum transport theories have been
published that permit the calculation of the increase in resistivity arising from electron–surface
scattering, in terms of the parameters that characterize the roughness of the surface [4–7].
One of the fundamental issues concerning size effects relates to the resistivity ρS induced
by electron–surface scattering in the absence of electron scattering in the bulk, and to the
bulk resistivity ρB due to electron–impurity scattering and electron–phonon scattering in the
absence of electron–surface scattering. The question is whether the resistivity ρF measured
on a film where both electron-scattering mechanisms are present (bulk scattering and surface
scattering) obeys Mathiessen’s rule, e.g. whether ρF satisfies ρF = ρS + ρB . Mathiessen’s law
is a powerful rule that applies to many electron-scattering mechanisms in crystalline solids.

From the point of view of theory, arguments have appeared in the literature that indicate
that Mathiessen’s rule is violated [5, p L830]. About a year later, the additivity of the scattering
rates due to bulk scattering and to electron–surface scattering (equations (4.4) and (4.10) in
[4]) was used to calculated σS = (ρS)

−1 and σF = (ρF )−1. From the experimental point of
view, the apparent film resistivity due to surface scattering ρ ′

S = ρF − ρB has been used as a
measure of ρS [7–9], thereby tacitly assuming the validity of Mathiessen’s rule.

In the process of extending the mSXW formalism [6] to compute the resistivity arising
from electron–surface scattering in a metal film bounded by a rough fractal surface, we found
evidence suggesting that Mathiessen’s rule might be severely violated in thin metal films [10].
However, the evidence is indirect, for it arises out of calculations of ρF and ρS based upon
the extension of the mSXW formalism to a rough fractal surface, instead of arising from an
analysis of thin film resistivity data. Metallic and semiconducting thin films are today the
object of intense, widespread research. Elucidating how severely electron–surface scattering
and electron scattering in the bulk violate Mathiessen’s rule in metal films, appears to be a
fundamental question whose (unknown) answer may be of interest to a wide audience. In
this letter we attempt to clarify how big the (expected) violations of Mathiessen’s rule are
that occur in thin metallic films, through the analysis of residual resistivity data published by
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different groups on more than 40 CoSi2 films, using the different quantum transport theories
available.

A word of caution seems appropriate. Metal films are often made out of grains that
coalesced having different crystalline orientations. Consequently, the (macroscopic) resistivity
observed in a metal film arises out of different (microscopic) electron-scattering mechanisms,
such as (a) electron–impurity scattering, (b) electron–phonon scattering, (c) electron scattering
by the rough surface at the upper (exposed) and (d) lower surface of the film (surface in contact
with the substrate), (e) electron–grain boundary scattering, (f) electron scattering by pinholes,
dislocations and other defects. Existing quantum theories incorporate only contributions to
the resistivity arising form electron-scattering mechanisms (a)–(c). Consequently, before
comparing theoretical predictions with experimental data, the data should be carefully
screened, in order to rule out or to minimize the effect of electron scattering mechanisms (d)–(f)
which are not included in any of the quantum theories available.

In order to minimize contributions to the resistivity arising from electron–grain boundary
scattering, the samples should be selected such that the lateral dimension L characterizing the
grains that make up the samples, is at least one order of magnitude larger than the thickness
t of the films [11]. To minimize contributions to the resistivity arising because of electron
scattering at the rough surface of the substrate, the substrate itself should be a freshly cleaved
crystal, such that the roughness is reduced to cleavage steps, that occur rather infrequently over
the scale of distance of tens to hundreds of nanometres set by the electron mean free path [6]. To
minimize contributions to the resistivity arising from defects, the metal film should be deposited
on a crystalline substrate that closely matches the lattice constant of the film, and should be
annealed. Fortunately, technical developments have made possible the fabrication of epitaxial
films of CoSi2 onto Si(111) with thickness ranging from 1 to some 110 nm. As a consequence
of a small lattice mismatch (1.2%) between CoSi2 and Si [3, 9, 12], and because of annealing at
temperatures in the range 500 ◦C or higher [3, 8, 9, 12], CoSi2 films exhibit grains with lateral
dimensions L in the range of several hundred nanometres,as measured by transmission electron
microscopy (TEM) [3, 12, 13]. Stochiometry and defect concentration are often monitored
by TEM [3, 8, 9, 12, 13] and by Rutherford back scattering (RBS) [8, 12, 13]. In a study
of crystallinity of a 170 nm thick CoSi2 film, the ratio of 〈111〉 channelling to random yield
measured using RBS was found to be 2% ‘. . . not only the best value reported for a silicide
film, but is among the best reported for any crystalline material’ [12, p 684]. Consequently
the system is well suited as a testing ground of different theories of size effects in metal films,
for CoSi2 is known to be a metal.

Concerning the resistivity of CoSi2 films grown on Si(111), there are several groups that
have reported measurements of the residual resistivity of families of films of different thickness
(e.g. the resistivity measured at 4 K, a temperature at which the resistivity arising from electron–
phonon scattering is negligible because the phonons are frozen out). In figure 1 we display the
raw data reported by Badoz et al [3], Duboz et al [8], Hensel et al [13] and, Henz et al [9].
The resistivity ratio shown in figure 2 of [3] was converted into the measured film resistivity by
multiplying the resistivity ratio by the bulk resistivity ρB = 23.5 n� m quoted by the authors
in [8]. The surface resistivity shown in figure 2 of [8] was converted into film resistivity by
adding the bulk resistivity ρB = 23.5 n� m quoted by the authors. The ratio of residual to
bulk resistivity displayed in figure 3 of [13] was converted into film resistivity by multiplying
the resistivity ratio by the bulk resistivity ρB = 26.0 n� m quoted by the authors. The residual
resistivity of the bare films displayed in figure 3 of [9] was converted into film resistivity by
adding the resistivity ρ0 = 5.4 n� m quoted by the authors.

In the calculation of the film resistivity predicted by different theories we used as transport
parameters characterizing the bulk, the mean free path � = 100 nm determined by Hensel and
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Figure 1. Film resistivity measured at 4 K plotted versus film thickness in films of CoSi2. Squares:
data from [3]; circles: data from [8]; triangle: data from [13]; inverted triangle: data from [9].
Dotted curve: theory of Tesanovic, Jaric and Maekawa (TJM) [5], with δ = 0.5 nm. Broken curve:
theory of Trivedi and Aschroft (TA) [4] with δ = 0.75 nm. Thin solid curve: theory of Fishman
and Calecki (FC) [7] using an exponential ACF with δ=ξ= 0.2nm. Thick solid curve: theory
mSXW [6], using a Gaussian ACF with δ = 0.2 nm, ξ = 0.5 nm. Inset: surface-induced resistivity
ρS plotted as a function of film thickness, for each of the models TJM, TA and mSXW-Gaussian.

co-workers by measuring the magnetoresistance of a 110 nm thick film [13], and the hole
density n = 3.0 × 1028 m−3 determined by Badoz and co-workers [3] by measuring the Hall
constant, that turns out to be independent of film thickness. To compare theory and experiment
we used a method already established, that relies on the assumption that the parameters δ, ξ

(where δ stands for the rms roughness amplitude, and ξ stands for the lateral correlation length)
do not depend on film thickness [2, 5, 8]. We selected for each of the theories a set of parameters
(δ, ξ) that would approximately describe that data and that would lie roughly within the range
of atomic dimensions, 0.20 nm � δ, ξ � 1 nm.

The surface-induced resistivity ρS and the thin film resistivity ρF corresponding to TA,
was computed as the inverse of equations (4.12) and (4.13) in [4], respectively. In the case
of TJM, we computed ρF as the inverse of σF given by equation (7) in [5]; ρS was computed
as the inverse of σS = lim(�→∞) σF . In the case of FC, ρS was computed as the inverse of
equation (13) in [2]. FC assume that ρF = ρS , since bulk scattering is ignored. In the case of
the mSXW model, ρS was computed as the inverse of the conductivity given by equation (1)
in [6], with R[un] = [(1 − kF un Q(un))/(1 + kF un Q(un))]2, where un = nπ

tkF
, kF stands for

the Fermi wavevector, and the self-energy Q(un) of the electron gas is given by equations (5)
and (6) of [6] in the case of a Gaussian and of an exponential representation of the height–height
autocorrelation function (ACF), respectively. Within the mSXW theory, the surface-limited
resistivity ρS = (σS)

−1 is computed as the limit � → ∞ by expanding the right-hand side of
equation (1) in [6] to first order in powers of t/�. This leads to

σS

σB
= 3t

4�

1

Xo NC

NC∑
n=1

(
1

un
− un

)
1 + R(un)

1 − R(un)
,
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where
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Note that in the case of thick films (films where the number NC of occupied subbands
satisfies NC � 1), a constant reflectivity R (e.g. R < 1 independent of angle) leads to a
finite mean free path �S limited only by electron–surface scattering, given approximately, by
�S = 3

4 t 1+R
1−R ln(NC ). This quantity, although it has no classical analogue, can be considered

as the quantum version of equation (21) in [1], where the quantum theory has removed the
logarithmic divergence ln(�/t) of the classical FS theory.

In figure 1 we plot the film resistivity ρF predicted by TA for δ = 0.75 nm, by TJM for
δ = 0.5 nm, by mSXW using a Gaussian ACF with δ = 0.2 nm and ξ = 0.5 nm, and by
FC using an exponential ACF with δ = ξ = 0.2 nm. For ultrathin films t < 10 nm, the
predictions of the mSXW model for a Gaussian ACF exceed by 20% or less the predictions
corresponding to an exponential ACF characterized by the same parameters δ and ξ; for thicker
films 10 nm < t < 110 nm both representations of the ACF lead to a similar ρF to within
a few per cent. Within the FC model, the mean free path for a Gaussian ACF is double the
mean free path for an exponential ACF and such a relation is independent of film thickness,
therefore the predicted FC film resistivity for a Gaussian ACF is one half of that corresponding
to an exponential ACF with the same parameters (δ, ξ). In the inset of figure 1 we display the
surface-induced resistivity ρS predicted by different models. In figure 2 we plot the different
�ρ/ρF = [ρF −(ρS +ρB)]/ρF , a dimensionless quantity that ought to be zero for all thickness
if Mathiessen’s rule is obeyed; how much �ρ/ρF departs from zero indicates the severity of
the violations of the additivity rule ρF = ρS + ρB . In the inset of figure 2 we plot the ratio
between ρS and the apparent surface resistivity ρ ′

S = ρF −ρB . Should Mathiessen’s rule hold,
then this ratio ought to be unity independent of film thickness; the degree to which the ratio
ρS/ρ

′
S departs from unity reflects the severity with which Mathiessen’s rule is violated.

Although the raw data plotted in figure 1 exhibits some appreciable scatter, as might be
expected for data reported by different groups, it seems clear that the data does not follow a
simple power law dependence on film thickness t, as has been claimed by other authors on the
basis of resistivity data covering a smaller range of thicknesses [2], The FC model predicts a
resistivity that exhibits a sawtooth behaviour, it decreases sharply with increasing film thickness
for certain thicknesses, as a consequence of the fact that the number of filled subbands that
participate in conduction increases by one each time the thickness of the film increases by
half a Fermi wavelength. This manifestation of QSE is also predicted by the other models
TJM, TA and mSXW, although the decrease in resistivity predicted by the other models (each
time the thickness increases by half a Fermi wavelength) is significantly less pronounced. The
resistivity predicted by FC fails to level off with increasing thickness for 10 nm < t < 110 nm.

Beyond these features, some of which have already been reported by other authors, these
plots illustrate two new and remarkable results:

(i) The values of ρF andρS predicted by these three (apparently) very different models,
roughly agree with each other and roughly describe the data, considering the scatter of
the raw data reported by different groups, over a thickness that changes by two orders of
magnitude, although the rms roughness amplitude needed to best describe the resistivity
data is somewhat different for each model,

(ii) all three models indicate that Mathiessen’s rule is severely violated in CoSi2 films, and
that the apparent surface resistivity ρ ′

S in this system is about one order of magnitude
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Figure 2. �ρ/ρF = [ρF − (ρS + ρB )]/ρF plotted as a function of film thickness. Dotted curve:
theory of TJM, with δ = 0.5 nm. Broken curve: theory of TA, with δ = 0.75 nm. Solid curve:
theory mSXW, using a Gaussian ACF with δ = 0.2 nm, ξ = 0.5 nm. Inset: ratio between the
surface resistivity ρS and the apparent surface-induced resistivity ρ′

S = ρF − ρB predicted by
different models, plotted versus film thickness.

larger than the surface resistivity ρS predicted by any of the models, except in the case of
ultrathin films which are only a few nanometres thick.

As pointed out above, the fact that Mathiessen’s rule is violated when the scattering
mechanisms involved are electron–surface scattering and electron scattering in the bulk, has
been known for over a decade. However, to our knowledge, this letter contains the first
quantitative estimation of how severe such a violation is. The results reported here are
consistent with published evidence in thin (t < 10 nm) CoSi2 films, figure 1 of [9], that
contradicts the additivity rule. Such violations become noticeable when the temperature
dependent film resistivity ρF (T ) (4 K � T � 300 K) measured in films of different thickness,
are no longer related to each other by means of a constant (temperature-independent) additive
term identified as residual resistivity in the Bloch–Grunheisen model. They become apparent
as the thickness of the film decreases below 10 nm and ρF (4) becomes comparable to the
resistivity ρBG expected from electron–phonon scattering at 300 K, ρBG(300) ≈ 125 n� m
(figure 2 of [13]).

The question naturally arises: why is Mathiessien’s rule violated? In the case where
electron motion is described through a classical model such as that based upon BTE, the
different scattering mechanisms appearing in the collision operator in BTE might be written
as the sum of the different collision operators corresponding to each scattering mechanism
acting alone. The resistivity arising from each electron scattering mechanism is proportional
to the matrix element representing the transition rate from the initial to the final electronic state.
However, writing the collision operator within the simplest approximation, the relaxation time
approximation, might lead to a relaxation time τ that turns out to be momentum dependent
τ (k). In such a case, the presence of two electron scattering mechanisms, each characterized
by relaxation times τ1(k) and τ2(k), leads to a total resistivity that is proportional to the average
of the inverse of the relaxation time 〈1/τ 〉 = 〈1/τ1〉 + 〈1/τ2〉, that need not be equal to the sum
1/〈τ1〉 + 1/〈τ2〉, as would be required for Mathiessen’s rule to hold [14].
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When a quantum transport theory is employed to describe electron scattering by a rough
surface, the quantum description of charge transport assigns an important role to the identity of
the states occupied by the electron, as is sharply manifested in QSE. Such an important role is
also reflected in the fact that, regardless of the different approximations involved, all quantum
theories of size effects lead to a resistivity that depends explicitly upon the subband index n that
identifies the quantum states participating in the conduction process. This is in contrast to bulk
scattering, where the fact that the metallic sample takes the form of a thin film (and the electron
momentum perpendicular to the film is quantized as a consequence of the confinement of the
electron gas between two parallel potential barriers) is irrelevant, and hence the corresponding
resistivity is independent of the identity of the electron states. As a result, the total resistivity
is no longer the sum of the resistivities arising from each of the different channels contributing
to charge transport, neither is the resistivity given by the sum of the different resistivities
arising from each electron-scattering mechanism acting alone. As pointed out in [4], as a
consequence of the fact that the electronic states are quantized and because of the importance
of the identity of the electron states within the quantum description of charge transport, the
additivity of the scattering rates (stemming from the statistical independence between averaging
over impurities or over the phonon population in the case of bulk scattering, and averaging
over surface roughness configurations in the case of surface scattering) no longer leads to the
additivity of the corresponding resistivities, consequently Mathiessen’s rule no longer holds.

The preceding argument implies that, in a thin metallic film, we should expect Mathiessen’s
rule to be violated, as a consequence of the fact that the quantization of the electronic states
within the film plays a dominant role in the surface resistivity ρS . Then the proper question to
ask seems to be the opposite: why (under what conditions) should Mathiessen’s rule be valid
in a metallic film, if the surface resistivity ρS is dominated by the quantized electron states
participating in conduction? The answer is, of course, that we might expect the validity of the
additivity rule to be recovered (to within a few per cent), when counting over quantized states
becomes irrelevant, that is, for films that are thick enough to contain hundreds of electron
states, films whose thickness is in the range of, at least, hundreds of nanometres. The tendency
of �ρ/ρF to decrease with increasing thickness t , reaching a level around 20% for t > 100 nm
displayed on figure 2, supports this conclusion.

In summary, we have analysed the residual resistivity data of more than 40 epitaxial films
of CoSi2 reported by different groups using different quantum theories of size effects in metal
films. We found that the predictions of the model of Trivedi and Aschroft [4], of Tesanovic
et al [5] and of the mSXW theory [6] agree roughly with the data and with each other over the
entire range of thickness 1 nm � t � 110 nm, although the rms roughness amplitude needed
to best describe the residual resistivity data is somewhat different for each model. All three
models predict surprisingly similar values for the resistivity ρS arising from electron–surface
scattering, and they all indicate that Mathiessen’s rule is severely violated in CoSi2 films.

The results reported here suggest the interesting conclusion that, regardless of which
theoretical model we choose to describe electron–surface scattering, Mathiessen’s rule is
severely violated in thin metallic films. They also suggest that, for the surface and bulk
resistivity to be additive to within an error of the order of a few per cent, the metallic film must
be thick enough to contain hundreds of electron states, which means that the film thickness
must be, at least, in the range of a few hundred nanometres.

RM, GK and LM gratefully acknowledge funding by FONDECYT under contract 1010481.
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